ЛАБОРАТОРНАЯ РАБОТА № 3

МЕТОДЫ ОТДЕЛЕНИЯ КОРНЕЙ УРАВНЕНИЙ С ОДНОЙ ПЕРЕМЕННОЙ

3.1. ЦЕЛЬ РАБОТЫ

Сформировать у студентов знания об основных методах отделения корней уравнений с одной переменной, выработать умения и навыки использования этих методов при решении конкретных уравнений.

3.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Изучить теоретическую часть. Выполнить задания, соответствующие номеру Вашего варианта, и продемонстрируйте их преподавателю.
 - 2. Оформите отчет по лабораторной работе, который должен содержать:
 - титульный лист;
 - исходные данные варианта;
 - решение задачи;
 - результаты решения задачи.

3.3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

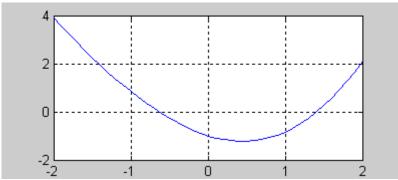
Пример 3.1.

Отделить корни трансцендентного уравнения $x^2 - \sin x - 1 = 0$ графически.

Решение.

1. Создайте файл Func.m (листинг 3.1), содержащий описание функции $y = x^2 - \sin x - 1$.

Листинг 3.1. Файл Func.m.


function z=Func(x)

 $z=x.^2-sin(x)-1;$

2. Постройте график функции $y = x^2 - \sin x - 1$ в промежутке [-2; 2] (рис.3.1), выполнив в командном окне пакета MATLAB следующую последовательность операторов:

 \Rightarrow $\hat{x}=-2:0.1:2;$

>> plot(x, Func(x)); grid on

Рис. 3.1. График функции $y = x^2 - \sin x - 1$

Из рисунка видно, что функция имеет два корня: $x_1 \in [-1; 0]$ и $x_2 \in [1; 2]$.

Пример 3.2.

Методом численного отделения уменьшить промежуток изоляции корня $x_2 \in [1; 2]$ уравнения $x^2 - \sin x - 1 = 0$ до промежутка длиной 0,1.

Решение.

1. Создайте файл ChislOtd.m (листинг 3.2), содержащий описание функции, уменьшающий промежуток изоляции корня методом численного отделения.

```
Листинг 3.2. Файл ChislOtd.m.
```

```
function Chislotd(f,x1,x2,h);
a=x1:
b=x1+h:
while b<=x2
    if feval(f,a)*feval(f,b) <= 0
        b
    end:
a=b;
b=b+h;
end:
2. Найдите новый промежуток изоляции корня:
>> ChislOtd('Func',1,2,0.1)
a =
    1.4000
b =
    1.5000
```

Таким образом, мы получили промежуток изоляции корня [1,4; 1,5], который имеет длину 0,1.

3.4. ПРИМЕРНЫЕ ВОПРОСЫ НА ЗАЩИТЕ РАБОТЫ

- 1. Что называется корнем уравнения?
- 2. Что значит решить уравнение?
- 3. Что значит отделить корень?
- 4. Какие существуют методы отделения корней?
- 5. Как находят границы расположения корней алгебраического уравнения?
- 6. Суть графического отделения корней уравнения.
- 7. Суть численного отделения корней уравнения.

3.5. ЗАДАНИЕ

- 1. Отделить корни трансцендентного уравнения графически.
- 2. Провести численное отделение корней.

Варианты заданий.

дарианты заоании.			
№ варианта	Задание	№ варианта	Задание
1	$\frac{x}{\ln^4(x-1)} = 3$	7	$\frac{x^2}{\sqrt[4]{1+x}} - 1 = 0$
2	$\frac{\cos^2 x}{\sin^4 x} = 1$	8	$2\ln x - \frac{1}{x} + 0,5 = 0$
3	$\frac{\cos x}{1-\sin x} + 1 = 0$	9	$\frac{x}{tgx} - 2 = 0$
4	$\frac{x}{\sqrt[4]{1+x^4}} + 0.5 = 0$	10	$x \cdot 2^{\sqrt{x}} = 3$
5	$\frac{x}{\sqrt[4]{1+x^4}} - 1 = 0$	11	$\frac{1-x}{\ln\left(x^2-1\right)}+1=0$
6	$\sqrt[3]{1-x^3} = x$	12	$e^{-x}=0.01+\sqrt{x}$